Japanese Scientists Create Remote-Controlled Cyborg Cockroaches

Japanese scientists have created a remote-controlled cyborg cockroach that can be used to inspect dangerous areas and monitor the environment! They developed a system using an ultrasoft solar cell that doesn't hinder the cockroach's movement. The system is wired into the cockroach's nervous system and pressing a button sends a shock, tricking it into moving in a certain direction

Researchers have engineered a system for creating remote-controlled cyborg cockroaches, equipped with a tiny wireless control module that is powered by a rechargeable battery attached to a solar cell. Despite the mechanical devices, ultrathin electronics and flexible materials allow the insects to move freely. These achievements will help make the use of cyborg insects a practical reality. An international team led by researchers at the RIKEN Cluster for Pioneering Research (CPR) reported the results today (September 5, 2022) in the scientific journal npj Flexible Electronics.

Scientists have been trying to design cyborg insects—part insect, part machine—to help inspect hazardous areas and monitor the environment. For the use of cyborg insects to be practical, however, handlers must be able to control them remotely for long stretches of time. This entails wireless control of their leg segments, powered by a tiny rechargeable battery.

eeping the battery adequately charged is critical—nobody wants a suddenly out-of-control swarm of cyborg cockroaches roaming around. While docking stations for recharging the battery could be built, the need to return and recharge could disrupt time-sensitive missions. Therefore, an optimum approach is to include an onboard solar cell that can continuously ensure that the battery stays charged.

Of course, all of this is easier said than done. To successfully integrate these devices into a cockroach that has limited surface area required the engineering team to develop a special backpack and ultrathin organic solar cell modules. They also needed an adhesion system that keeps the machinery attached for long periods of time while still allowing natural movements.

Led by Kenjiro Fukuda, RIKEN CPR, the research team experimented with Madagascar cockroaches, which are approximately 6 cm (2.4 inches) long. They attached the wireless leg-control module and lithium polymer battery to the top of the insect on the thorax using a specially designed backpack. This was modeled after the body of a model cockroach and 3D printed with an elastic polymer. The result was a backpack that conformed perfectly to the curved surface of the cockroach, allowing the rigid electronic device to be stably mounted on the thorax for more than a month.